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Abstract— Percutaneous intervention involves the insertion of
needles to specific locations inside the human body, to perform
a variety of surgical procedures. Percutaneous procedures are
becoming the preferred choice for many neurosurgeons, due
to the additional benefits they provide over conventional open
neurosurgery. A neurosurgical flexible and steerable probe
named STING is currently being developed for accessing deep
brain lesions following curvilinear paths. In this paper, we
present a path planning method for generating pre-operative
paths for this neurosurgical flexible probe. Since the flexible
probe is modeled as a nonholonomic system, a deterministic
continuous curvature path planning scheme capable of avoiding
obstacles is developed for smooth steering of its tip. Multiple
paths are generated by varying arrival angle at the targeted
lesion and a path optimization approach is then formulated,
with the aim to minimize damage to the tissue (i.e. shortest path)
and the risk to the patient (obstacle avoidance). Simulation
results are reported using the risk-map generated for a coronal
slice of the brain, which confirms the successful design of a path
planning scheme that satisfies the nonholonomic constraints of
the neurosurgical probe.

I. INTRODUCTION

With the recent advances in medical imaging modalities,
percutaneous interventions are becoming the preferred choice
in neurosurgical procedures, since they provide benefits of
reduced trauma, less pain and short recovery time to the
patient. These interventions require insertion of probes, nee-
dles or electrodes inside the brain, using CT or MRI images,
to precisely target lesions, while avoiding obstacles such as
sensitive tissue, nerves or arteries.

Thick and non-flexible needles are easily pointed to the
target but their manipulation causes significant pressure on
the tissue. Moreover, straight needles are not suitable for
following curved paths, if obstacle avoidance is required.
These problems can be solved by using thin and flexible
needles. Thus, a biologically-inspired neurosurgical flexible
and steerable probe named STING (Soft-Tissue Intervention
and Neurosurgical Guide) [1] is currently being developed
at Imperial College London, with the aim to access deep
brain lesions, while ensuring minimum damage to the patient.
The flexible probe is currently capable of steering in two
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dimensional space and is modeled as a nonholonomic system
[2]. Mechanical constraints of this probe impose a minimum
radius of curvature constraint on the path. Furthermore, the
probe kinematics require the curvature to be continuous.

Recently, Alteroviz et al. [3] resolved the motion planning
problem for a special class of flexible bevel-tip needle, re-
sulting in a trajectory that avoids obstacles while accounting
for needle motion uncertainties. This technique, however,
cannot be used for our flexible probe due to its mechanical
constraints [1]. There is a need for a pre-operative path
planning method for the flexible probe, which should mainly
satisfy its curvature continuity constraint.

Several methods already exist for the path planning of
mobile robots, which can be applied to the flexible probe.
A prevalent method in the literature uses Dubins curves,
which uses line segments and circular arcs to generate the
shortest path having discontinuous curvature [4][5]. Variants
of Dubins curves make use of the clothoid pairs along
with line segments and circular arcs, resulting in continuous
curvature paths [6]. However, such curves do not have a
closed-form expression of the position [5]. Moreover, they
are not flexible in matching the endpoint conditions of the
path and are not suitable in the presence of obstacles [7].

Path planning is also addressed using probabilistic meth-
ods, where an iterative approach is used to achieve a near
optimum solution. Examples of these include Probablistic
Road Maps (PRMs) [8] and Rapidly-exploring Random
Trees (RRTs) [9]. Patil and Alterovitz [10] demonstrated a
motion planning method using reachability guided rapidly
exploring random trees (RG-RRT). Recently, Alterovitz et
al. [11] also presented a rapidly-exploring road-map based
approach for path planning. However, these approaches do
not guarantee an optimum solution and are unable to generate
curvature continuous paths without further modification.

Nagy and Kelly [12] and Thompson and Kagami [13]
proposed a deterministic approach for the optimization of
curvature to obtain continuous and smooth paths for nonholo-
nomic robots. This method generates continuous curvature
paths by modeling the curvature as a polynomial. Thus,
we adopt a similar approach for the path planning of the
neurosurgical flexible probe.

In this paper, a gradient method is proposed using [12]
and [13] for the path planning of the flexible probe, since it
provides the additional advantage of generating continuous
curvature paths. Section II gives an introduction to STING.
Section III details the mechanical constraints of STING and
the proposed approach for solving the path planning problem.
Simulation results are presented in Section IV. Conclusion
and future work are detailed in Section V.

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

920978-1-4577-1787-1/12/$26.00 ©2012 IEEE

Authorized licensed use limited to: University College London. Downloaded on July 11,2020 at 18:04:59 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Soft-Tissue Intervention and Neurosurgical Guide

II. STING: SOFT-TISSUE INTERVENTION AND
NEUROSURGICAL GUIDE

The design of STING is inspired by the ovipositor of
wood wasps, which is used to penetrate the bark of wood to
deliver eggs [1]. It is designed to steer in brain-like tissue,
while avoiding sensitive anatomical areas to reach a deep-
seated target at minimum risk to the patient. Figure 1 shows
the steering of STING in a gelatine sample of brain-like
consistency, as in [1]. This flexible probe consists of four
interlocked segments, which are capable of sliding indepen-
dently with respect to each other. Control of the steering
angle is achieved by varying the offset between segments,
where the relationship between offset and curvature was
found to be approximately linear [2].

The overall system architecture of the flexible probe is
illustrated in Fig. 2. It consists of two main blocks: path
planning and path following. This paper focuses on the
former, which takes the pre-operative diagnostic images
(Magnetic Resonance Images showing the location of the
deep brain target) and the physical constraints imposed by
the flexible probe as input, and provides a planned path
with minimum risk as output. Preliminary results of a path
following approach which was successful on a scaled-up
12mm probe prototype can be found in [2].

In this paper, we aim to compute the optimal path for
the neurosurgical flexible probe from a given start point to
a lesion identified on a 2D brain slice, while respecting the
probe’s mechanical constraints. We also implement a risk-
based path planning approach, where the anatomical regions
on a 2D coronal section of the brain have been labeled
according to the level of risk experienced by the patient if it
was to be traversed, from ‘accessible’ to ‘avoid’.

Fig. 2: System architecture of the flexible probe

III. CONTINUOUS CURVATURE PATH PLANNER

A. Mechanical Constraints of the Flexible Probe

The flexible probe is capable of changing its direction
with the help of a ‘programmable bevel-tip’. An off-line
continuous path planner is needed due to the mechanical
limitations of the probe. These limitations are as follows:

1) The maximum curvature should be bounded, resulting
in a minimum radius of curvature constraint.

2) A drastic change in curvature is not allowed; hence the
curvature should be continuous.

3) The rate of change of curvature should also be bounded
in order to reduce damage to the tissue.

Gradient-based nonlinear optimization methods are useful
for generating smooth paths for nonholonomic robots [14].
We modified this method to adapt it for the path planning of a
flexible probe because it successfully generates a continuous
curvature path while avoiding obstacles. The cost function
for obstacle avoidance is designed to cater for irregular
shaped obstacles and to guarantee fast processing. The bound
on maximum curvature and its derivative is achieved by
calculating multiple paths while varying the arrival angle at a
target and selecting the one which satisfies these constraints.

B. The Approach
1) Path Planning without Obstacle Avoidance: Let x0 =

[x0, y0, θ0, κ0]
T and xT = [xT , yT , θT , κT ]

T be the start
and target postures of the flexible probe. The gradient
method optimizes the cubic curvature polynomial to generate
deterministic continuous path between these postures. For a
configuration space free of obstacles, the solution to the state
equations is given in [12]:

x(s) = x0 +
∫ s

0
cos(θ(τ))dτ ,

y(s) = y0 +
∫ s

0
sin(θ(τ))dτ ,

θ(s) = θ0 +
∫ s

0
κ(τ)dτ ,

κ(s) = κ0 + as+ bs2 + cs3 ,

(1)

where (a, b, c) are the coefficients of the polynomial and s
is the arc length. The parameter vector p = [a, b, c, s]T is
initialized and the path is computed by iteratively updating
p. The convergence of the algorithm is guaranteed only if
the termination conditions are satisfied [12].

The set of non-linear equations in (1) can be re-written in
vector form as x = f(p), which can be linearized as follows:

∆x = [
∂

∂p
f ]∆p . (2)

Since the degrees of freedom to control the entire endpoint
state are available, its Jacobian has sufficient rank and is
invertible. Thus, we solved it iteratively using (3), until
convergence is achieved.

∆p = [
∂

∂p
f ]−1∆x . (3)

The problem is treated as an inverse kinematics com-
putation. Starting with an initial guess of p, the forward
solution is calculated using (1) to get the end point x́ for the
proposed path. The Jacobian and difference ∆x = x́ − xT
are calculated and ∆p is obtained using (3). Finally, the
parameters update is computed using:

p = p+ µ∆p , (4)

where µ represents a constant gain. The process is repeated
until p converges to an acceptable trajectory, while ∆x tends
towards zero [12]. The complete method is summarized in
Algorithm 1.
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Algorithm 1 p← GRADIENT METHOD(x0, xT )

1: p← INITIALIZE PARAMETER VECTOR(p)
2: while (∆x ̸≈ 0) do
3: Compute forward solution x′

4: Compute Jacobian and ∆x
5: Calculate ∆p using eq. (3)
6: Update parameter vector p using eq. (4)
7: end while

2) Path Planning with Obstacle Avoidance: The cubic
curvature trajectories are extended to fourth-order polyno-
mials and a cost function (L) is introduced, which describes
the accumulated distance to obstacles along a trajectory [13].
The posture vector is now given by x = [x, y, θ, κ, L]T .
The trajectory generated using the fourth-order polynomial
as curvature model satisfies the continuity constraints and
avoids obstacles. A control point is added to parameters and
the curvature polynomial is given by:

κ(s) = κ0 + as+ bs2 + cs3 + ds4 . (5)

The state parameters θ(s), x(s), y(s) are computed accord-
ingly using (1). The new term L, describing the cost imposed
by the presence of obstacles, is formulated as in [13]:

L(s) =

∫ s

0

(
λ

ν0
+ · · ·+ λ

νN−1
)dτ , (6)

where λ describes the repulsive quality of obstacles and νi
is the distance between a robot posture and an obstacle i.

A continuous curvature path is generated using a cubic
polynomial, which is checked for obstacle collisions. If the
resultant path collides with an obstacle, the approach is
extended to a fourth-order polynomial optimization, where
the parameter p = [a, b, c, d, s] is initialized using the result
of the cubic curvature optimization and the cost function
is calculated using (6). Algorithm 1 is then followed until
convergence is achieved.

The cost function L, from [13], has several limitations.
It does not take into account irregular-shaped obstacles.
Furthermore, L becomes computationally expensive in the
presence of many obstacles, thus reducing overall efficiency.

Unlike [13], we propose a new cost function Lnew to
overcome the above limitations. Lnew is defined such that
it only consider obstacles lying in the local neighbourhood
of the trajectory during the iterative update of the algorithm.
We use a local neighbourhood window of size (2Dc + 1)×
(2Dc + 1) (where Dc is the clearance required from the
obstacles). We slide this window over the initial trajectory
generated by the cubic curvature polynomial and capture the
trajectory information, which is then convolved with a 2D
Gaussian kernel. Finally, we define a distance measure D(s)
using the above information, which is given by:

D(s)j = Dc −DcO(xj , yj) , (7)

where xj and yj are the x and y coordinates of the jth
sampled trajectory point and O(xj , yj) is given by:

(a) A configuration space showing
third (red) and fourth order (green)
trajectories

(b) Distance D(s) for first instant
of red trajectory

Fig. 3: Irregular shaped obstacles (white) are avoided using
Lnew, resulting in fourth order continuous curvature paths

O(xj , yj) =

Dc∑
k=−Dc

Dc∑
l=−Dc

I(xj + k, yj + l)G(k, l) , (8)

where I and G represent the configuration space and Gaus-
sian kernel, respectively. Thus, the new cost function Lnew

is given by:

Lnew =

∫ s

0

(
λ

D(s̃)j)
)ds̃− s λ

Dc
. (9)

Figure 3 shows the result obtained in an example con-
figuration space containing irregular shaped obstacles. Note
that the value O(xj , yj) will be high when the trajectory is
occluded by obstacles, thus resulting in a low value of D(sj).
Hence, this newly designed Lnew produces an obstacle free
path by deforming the trajectory of a cubic polynomial into
a fourth order polynomial.

C. Path Optimization

We generate multiple paths by varying the target orienta-
tion θ, since this is required in order to implement risk-based
path planning on a 2D risk-map of the brain. The continuous
curvature paths satisfying the maximum curvature constraint
are then selected as the most feasible paths. The optimal path
is the one having the minimum value for the following cost
function [15]:

Ci = α
ϕi

max(ϕ)
+ β

(
1− ψi

max(ψ)

)
+ γ

ηi
max(η)

(10)

where Ci refers to the ith path’s cost, ϕi is the length of
the path, ψi is the minimum distance from an obstacle, and
ηi is the accumulated risk along the path. The weighting
parameters α, β, γ are defined by the user, such that α+β+
γ = 1.

IV. SIMULATION RESULTS

The algorithm was developed using MATLAB v.7.9, on
an Intel Core 2 CPU 6300@1.86GHz processor. The flexible
probe, with a thickness of 4mm (outer diameter), is con-
strained with a maximum curvature of 0.01 (1/mm). The
control error is arbitrarily set to 2mm. The generated path
should thus have a clearance of 4mm from any obstacles.
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Fig. 4: Formation of configuration space (right) from the
risk-map of a brain (left), with six levels of risk labeled

Fig. 5: Gradient based path planner showing the effect of
varying target orientation θ (left) and curvature κ (right)

Simulations were performed on a 2D risk-map (153×153
pixels) generated from a coronal slice of the brain, using a
scale of 1 pixel = 1mm. The main structure of the brain was
arbitrarily classified into six ‘risk-values’, namely Accessible,
Common, Careful, Warning, Dangerous, Avoid, as shown in
Fig. 4. Each risk-value was then assigned a greyscale value
ranging from 0 to 255, where black denotes an accessible and
white denotes an impenetrable area. The configuration space
is formed by considering the highest risk-value, i.e. ’AVOID’
and dilating it by the thickness of the flexible probe.

The start pose (60mm, 60mm,π/4) and target position
(130mm, 160mm) are selected as input for the algorithm.
The start and target values of curvature (κ) are arbitrarily set
to 0.008(1/mm), while a range of target orientations in the
range (−0.2 to 1.0rad) were selected manually. By varying
the target orientation θT , several continuous curvature paths
were generated and the result is shown in Fig. 5. The optimal
path is selected by using (10). The result for different values
of weighting parameters α, β, γ are shown in Fig. 6.

V. CONCLUSIONS

A bespoke gradient-based method for the continuous and
smooth path planning of steering probes has been developed
by modifying existing approaches available in the litera-
ture. These changes were introduced to satisfy the specific
mechanical constraints of a flexible probe inspired by the
egg-laying channel of certain insects, by allowing both the
curvature and the curvature derivative to be bounded and
continuous. A path optimization scheme is also reported,
which computes an optimum path based on predefined crite-
ria, while ensuring minimum damage to the tissue, maximum

Fig. 6: Results for optimization of path showing (in green)
the shortest path (α, β, γ) = (1, 0, 0) (left), path with
maximum clearance from the obstacle (α, β, γ) = (0, 1, 0)
(middle), path with minimum risk (α, β, γ) = (0, 0, 1) (right)

clearance from obstacles and minimum risk to the patient.
Future work involves incorporation of soft tissue deformation
during insertion to reduce placement error and extension of
the path planner to 3D, since the neurosurgical flexible probe
design will eventually allow it to steer in 3D space.
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