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We propose a framework for the automatic grouping and alignment of unedited multi-
camera User-Generated Videos (UGVs) within a database. The proposed framework ana-
lyzes the sound in order to match and cluster UGVs that capture the same spatio-temporal
event and estimate their relative time-shift to temporally align them. We design a descrip-
tor derived from the pairwise matching of audio chroma features of UGVs. The descriptor
facilitates the definition of a classification threshold for automatic query-by-example event
identification. We evaluate the proposed identification and synchronization framework on
a database of 263 multi-camera recordings of 48 real-world events and compare it with
state-of-the-art methods. Experimental results show the effectiveness of the proposed
approach in the presence of various audio degradations.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

With the increasing availability of smartphones, more people capture videos of their experience of attending events such
as concerts, sporting competitions and public rallies. Social media sites then act as a distribution channel to share these
experiences by giving access to these unorganized and unsynchronized User-Generated Videos (UGVs). This trend has invoked
a new research direction involving search and organization of multimedia data of the same event [2,40]. We define an event
as a continuous action captured simultaneously by multiple user-devices from different positions located in proximity with
each other.

By identifying videos belonging to a specific event, powerful event browsing can be enabled, which in turn can improve
web search tools. However, it is non-trivial to automatically identify UGVs of the same event. In fact traditional metadata-
based methods for event retrieval [21,33] may not always be effective because metadata associated with uploaded videos
may lack consistent and objective tagging, or correct timestamps [15,23]. Moreover, UGVs are not synchronized, and auto-
matic synchronization is difficult due to the presence of various audio and visual degradations. We are interested in using the
audio signal for identifying and synchronizing UGVs. Synchronization of UGVs using audio features is generally based on
onsets (starting point of an audio instant) or fingerprints (compact content-based audio signatures) [43,28]. In order for a
method to be successful, audio degradations and noise have to be taken into account.
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We categorize audio degradations into two groups, namely, local and global degradations. Local degradations are caused
by recording device settings, channel noise, surrounding noise and reverberations. Global degradations are common to some
or all recording devices (e.g. a crowd cheering, a whistle blowing during a specific event or a public rally) and may help dur-
ing the synchronization process.

In this paper, we propose an automatic query-by-example event identification and synchronization framework using
audio chroma features. Although the recording of a specific event captured by multiple devices might differ in loudness
or sound intensity due to the varying quality of recording devices, the distance of the device from the sound source and sur-
rounding noise, the pitch of the recorded sound will remain constant [10]. For this reason, we use chroma as an audio feature
[18], as it gives the distribution of energy along different pitch classes. The novelty of this work also lies in the design of a
descriptor from match and non-match histograms that facilitates the definition of an automatic classification threshold for
event identification and clustering. We show the robustness of the proposed synchronization approach compared to alter-
native methods over various audio degradations.

The paper is organized as follows. In Section 2, we present the related work. In Section 3, we define and formulate the
video identification and synchronization problem. In Section 4, we present an overview of the proposed framework. In Sec-
tion 5, we describe our proposed event identification framework, which is followed by time-shift estimation and cluster
membership validation in Section 6. In Section 7, we describe our dataset of UGVs, assess our method and compare the
method with the existing state of the art. Finally, Section 8 concludes the paper.
2. Related work

In this section, we discuss the state of the art for content identification for videos, music and generic sounds, and synchro-
nization for multi-camera videos.

Video identification aims at identifying videos that match with a query, for example, to filter unauthorized distribution of
copyrighted videos [22,31,32,35,41,44]. Extending these approaches to UGVs is not trivial because there might not exist the
same visual evidence between pairs of UGVs due to variations in the field of view, changing and poor lighting conditions, and
visual quality. A related topic is content identification in music for tagging, play-listing and taste profiling [4,8,9,12]. Meth-
ods include those used for Shazam and TrackID [29,34,46], which are based on the fingerprinting method by Wang et al. [47]
for audio identification.

Event identification using audio features has been addressed in [28,11,5], which use landmark-based audio fingerprinting
[47], where the landmarks are the onsets of local frequency peaks and are identified from the short-time Fourier transform.
Kennedy and Naaman [28] presented an approach for the synchronization and organization of a collection of concert record-
ings, in which the classification threshold is computed based on the mean and standard deviation of the matches. Cotton and
Ellis [11] used matching pursuit to obtain a prominent representation of audio events and tested their event identification
approach on a public speech dataset. Both approaches [28,11] use hash value similarity maximization for matching pairs of
recordings. A similar approach is presented by Bryan et al. [5] for event identification and synchronization. This method uses
landmark cross-correlation for matching and a fixed classification threshold to cluster a speech dataset of 180 professional
recordings and 23 user-generated recordings of concerts. However, a fixed classification threshold [5,28] can be applied only
if the dataset under analysis is small.

Existing methods for multi-camera UGV synchronization involve extraction and matching of features such as audio fin-
gerprints [43,28,5,6], audio onsets [43,3], audio feature-based classification [42] and audio-visual events [7], where an audio-
visual event was defined to be a simultaneous change in the audio and video streams which are well localized in time. Also,
Kammerl et al. [27] proposed graph-based methods for temporal synchronization built by analyzing consistency in pairwise
cross-correlation of three audio features, namely, spectral flatness, zero crossing and signal energy. The audio fingerprinting
method of Haitsma and Kalker [20] is exploited by Shrestha et al. [42,43]: a 32-bit sub-fingerprint (binary) is generated
based on spectrum-temporal analysis of the audio in an overlapping window. Two fingerprint-blocks of 256 consecutive
sub-fingerprints are considered to be matching if the number of bit errors (BER) is smaller than a threshold [20]. The land-
mark-based fingerprinting approach by Wang [47] is used by Kennedy and Naaman [28] and Bryan et al. [5] for the synchro-
nization of collections of concert recordings. However, fingerprinting might become sensitive to reverberations [43] and
strong local degradations [36] (see Section 5.3).

In comparison to audio fingerprints, onset-based methods [43] are more sensitive to audio degradations as they reflect
only positive changes in energy and false positive onsets can be generated by channel and background noise. Casanovas
and Cavallaro [7] presented an audio-visual method for multi-camera synchronization in which an audio event is detected
using audio onsets [43] followed by visual event detection by analyzing the local variation of pixel intensities within a pre-
defined space–time blocks of a detected audio event. A space–time block is considered to be active if its local variation is
greater than a threshold, and an audio-visual event is detected when several active blocks are in close proximity. This
method is sensitive to audio degradations, in the same way as the onset based method [43] is and is dependent on camera
motion and near or far fields of view.

An audio feature classification method for multi-camera synchronization is presented in [42], which is based on low-level
signal properties, mel-frequency cepstral coefficients (MFCC), psychoacoustic features (roughness, loudness, sharpness), and
temporal envelope fluctuations model. Quadratic discriminant analysis [37] is performed to estimate the probabilities of



Table 1
State of the art methods for identification and synchronization of multi-camera UGVs. Key: ID: identification; SYN: synchronization; AFC: audio feature
classification; AF: audio fingerprint; AO: audio onset; PI: pixel intensity; AC: audio chroma; ILD: insensitive to local degradations; IGD: insensitive to global
degradations; K: total number of events; M: total number of recordings; PP: professional production recordings; AS: amplified sound recordings; NAS: non-
amplified sound recordings. The letters a and b in Ref. indicate different methods proposed in the same paper.

Ref. Method Feature Properties Matching approach Dataset properties

ID SYN AFC AF AO PI AC ILD IGD K M PP AS NAS

[42] U U Cross-correlation maximization 5 11 U

[43]a
U U Cross-correlation maximization 7 30 U

[43]b
U U U Bit Error Rate (BER) minimization 7 30 U

[28] U U U U Hash value similarity maximization 3 608 U

[5] U U U U Cross-correlation maximization 9 203 U U

[11] U U U Hash value similarity maximization 1 733 U

[7] U U U Cross-correlation maximization 8 40 U U

This work U U U U U Feature similarity maximization 48 263 U U

110 S. Bano, A. Cavallaro / Information Sciences 302 (2015) 108–121
silence, music, speech, noise and crowd classes for every frame size of 11.6 ms. Cross-correlation is then used to match
recordings to estimate the time-shift.

In this work, we exploit chroma features to identify clusters of UGV and then perform synchronization. Chroma features
are mainly used in professional music recordings for identification [16], chord recognition [25], genre classification, audio
thumbnailing [1], matching [39] and synchronization [17]. Müller et al. [39] presented an audio matching approach using
Chroma Energy distribution Normalized Statistics (CENS), which is a variant of chroma features. In this method either the
number of matches to be retrieved or the threshold value for the distance of a retrieved match need to be pre-defined. Ewert
et al. [17] proposed a method of score-to-audio alignment in music that combines chroma with onset features and performs
matching using dynamic time warping (DTW). The testing is performed on noiseless synthesized music files. To the best of
our knowledge chroma feature has not been used for analyzing audio content of UGV which contains several audio degrada-
tions and an amplified or non-amplified sound source.

Table 1 summarizes the state of the art for identification and synchronization of multi-camera UGV. Unlike [43,28,5,11],
which are sensitive to reverberations and local degradations, our proposed framework shows robustness to both local and
global degradations (see Section 7).
3. Problem formulation

Let C ¼ fCmgM
m¼1 be a database of unorganized and unsynchronized User-Generated Videos (UGVs) containing M record-

ings Cm. Let E ¼ fEkgK
k¼1 be the set of events represented in C, where K 6 M. We are interested in solving three problems:

clustering videos corresponding to the same event, synchronizing the clustered videos on a common timeline and associat-
ing a new video (Cq) to an existing cluster.

Video event clustering aims to organize the database C into K clusters, such that each cluster k represents an event
Ek ¼ fCk;ngNk

n¼1 containing Nk UGVs having partial or complete temporal overlap with each other. Multi-camera synchronization
aims to temporally align the set of UGVs belonging to an event Ek. Without loss of generality, let us consider two videos Ck;1

and Ck;2 of the same event Ek, and having the same frame rate. Ck;1 and Ck;2 are considered to be synchronized when the
recording time ti

1 at the ith frame of Ck;1 and tj
2 at the jth frame of Ck;2 correspond to the same moment in the universal time

t, an instant referring to the continuous physical time. Let the time-shift be Mt12. Finally, the problem of associating a new
video Cq to a cluster k involves identifying the set Ek ¼ fCk;ngNk

n¼1 of UGVs matching Cq.
4. Proposed framework

Our proposed discovery and organization framework can be split into two main stages, as depicted in Fig. 1. For a query
video Cq, the set of UGVs fCk;ngNk

n¼1 belonging to event Ek is identified, then the synchronization time-shifts Dtq;1:Nk
are

estimated. In order to eliminate false identifications, a validation of the synchronization time-shifts is performed. Our
multi-camera visualizer is then used to playback the set of synchronized UGVs belonging to Ek. In this section, we present
the proposed framework and the main assumptions.

We extract the chroma feature vector Fm using an audio frame size f r . A feature matching strategy is proposed that max-
imizes the similarity of pairs of overlapping feature vectors Fi and Fj and provides a histogram representation for the match
and non-match recording pairs. The histogram depicts the occurrence of the value of similarity between Fi and Fj. The frame
size f r in feature extraction is important for the design of the video identification and synchronization framework. By refining
f r for the identified cluster of videos for an event Ek, we can estimate the synchronization time-shift. For video identification,
a small value of f r1 would make the identification process extremely slow, while a large f r1 might not give accurate results.

For video event identification, we assume that the histograms for match and non-match recording pairs are separable. For
example, when audio signals Ai and Aj belong to the same Ek event, matching of their feature vectors Fi and Fj shows strong



Fig. 1. Block diagram of the proposed framework, which is composed of two stages, video identification (discovery) and synchronization (organization). For
a given query video Cq , feature extraction is performed with f r1 (s1 ¼ 1; s2 ¼ OFF), and its feature matching is done with the feature database of M UGVs to
generate the feature matching vector Vmq . Post-processing is then performed and a classification threshold C is applied to identify the set of N overlapping
recordings. The time-shift estimation Dtn is then performed with f r2 (s1 ¼ 2; s2 ¼ ON) for these N recordings in order to synchronize them. A multi-camera
visualizer is used for playback of the N synchronized UGVs.

S. Bano, A. Cavallaro / Information Sciences 302 (2015) 108–121 111
correlation represented by a high peak in the matching histogram Vij, otherwise, there is no dominant peak. Unlike existing
methods for video identification [5,28], which use a fixed classification threshold to detect the matching recording pairs, we
propose an automatic classification threshold strategy in which we learn the threshold (as detailed in Section 5.4).

For synchronization, we assume that the time difference of arrival of a sound is negligible. Two recording devices observ-
ing the same event might have a time difference of arrival of sound e12 due to their different distances from the sound source.
Let the audio signal of the nth video recording be Anðti

nÞ; ti
n ¼ i

sn
;0 6 i < Kn, where i is the index of the audio sample, ti

n is the

time at the ith sample for the nth recording, An is the amplitude of the audio sample at time ti
n; sn is the audio sampling rate

and Kn is the total number of audio samples. The estimated time-shift obtained between Ck;1 and Ck;2 is
Mt12 ¼ ti
1 � tj

2 þ e12; ð1Þ
where e12 ¼ Md12
ts

is the time difference of arrival, in which Md12 ¼ d1 � d2 reflects the distance of the cameras from the sound
source and ts ¼ 340 m/s is the speed of sound. Let us consider that the videos are recorded at a frame rate of f rate ¼ 25 fps.
The separation allowed between two cameras while staying in a video frame tolerance of ±1 frame (e12 ¼ 0:04 s) is
Md12 ¼ 14 m. In the case of UGVs, Md12 is unknown as, when sharing these videos on the internet, the information about
the geographical location of the cameras and their distance from the sound source is generally not available. We assume that
the cameras recording a particular event lie in the vicinity of each other so that Md12 < 14 m, thus making e12 negligible.

Some recording devices might yield the problem of audio drifting out of sync with the video when the recording time is
long. Audio drift is generally caused by audio sample rates that do not match the audio settings in the recording device. In
this work, we assume that no UGV is affected by the audio drifting out of sync with the video issue.

5. Event identification

In this section, we present our video event clustering approach which aims to identify multi-camera UGVs of the same
event Ek. The two main blocks of this approach are feature extraction and feature matching. We propose an approach for
learning the classification threshold C from the match/non-match histograms of the training video events. Event clustering
is then performed followed by the association of a new video Cq to the database.

5.1. Feature extraction

We use chroma feature [18] as a descriptor for the audio content of UGVs. Audio chroma gives a 12-dimensional repre-
sentation of the tonal content of an audio signal derived by combining bands belonging to twelve pitch classes
(C;C#;D;D#; E; F; F#;G;G#;A;A#

;B) corresponding to the same distinct semitones (or chroma). The chroma feature is useful
in distinguishing different types of sound, such as voice and musical instruments [1,39]. The chroma feature vector is rep-
resented as v ¼ ðv0;v1; . . . v11Þ 2 R12�1, where v0 corresponds to the energy of chroma C; v1 corresponds to the energy of
chroma C#, and so on. Each chroma is computed as [38]
vq ¼
X

s:t l ðmod 12Þ¼q

f ðlÞ; ð2Þ
where q 2 ½0;11� indicates the chroma number and l denotes the pitch class index corresponding to a particular spectrum bin
index. The pitch class index l depends on their center frequency f ðlÞ in a logarithmic way and is given by [38]
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l ¼ vdlog2
f ðlÞ
f s

� �
þ lc; ð3Þ
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where f s ¼ 440 Hz, which is the standard frequency for pitch tuning [38] that corresponds to the concert pitch (reference
pitch to which musical devices are tuned) lc ¼ 69 (A4) and vd ¼ 12 which represents the 12-dimensions (semitones) of
the chroma vector. A pitch class is the set of all pitches which share the same chroma. For instance, the pitch class corre-
sponding to chroma C is ðC0;C1;C2; . . . ;C8Þ and relates to the pitch subbands ð12;24;36; . . . ;108Þ. This is represented using
a chromagram as illustrated in Fig. 2(a).

We first decompose a given audio signal of a UGV into overlapping audio frames and then compute chroma features for
each audio frame. Each audio frame is composed of an audio segment of frame size f r and overlap shift hp between two con-
secutive frames (as shown in Fig. 2(a)). The number of audio frames � n in AnðtnÞ is a function of the number of audio samples
Kn in AnðtnÞ and is computed as
� n ¼
Kn

snf rhp
: ð4Þ
The frequency spectrum f ðlÞ of each audio frame is then computed by applying the discrete Fourier transform (DFT), and is
mapped into the pitch class using Eq. (3). The chroma vector for a particular audio frame is thus represented as vq 2 R12�1,
such that q defines the time stamp of a particular frame position. Fig. 2(a) illustrates the process of extraction of the chroma
feature for a particular audio frame. Chroma features for the nth audio signal AnðtnÞ, segmented into � n audio frames are
given by
Fn ¼ fvq
ng

�n
q¼1; ð5Þ
where vq
n 2 R12�1 is the chroma feature vector for the qth frame of the nth camera’s audio signal.

5.2. Feature matching

Once the features are extracted, the next step is to perform feature matching for computing the similarity and time-shifts
between pairs of recordings. Our proposed matching method operates by maximizing the feature similarity between a pair of
camera recordings. For a pair of recordings Ci and Cj, the distance between their chroma features Fi and Fj is given by
dst

ij ¼ Eðvs
i ;v

t
j Þ, where Eð�Þ is the Euclidean distance [45] between the sth and tth feature vector, and s 2 ½1; � i� and t 2 ½1; � j�

give the range of frame numbers for Ci and Cj, respectively. The distance matrix ^ij between Fi and Fj is then given by
^ij ¼ ½dst
ij �R� i�� j : ð6Þ
Fig. 2(b) shows the distance matrix ^ij for two feature vectors obtained from two overlapping camera recordings, each of
2 s duration. The distance matrix ^ij contains information about the feature matching of two recordings. In order to interpret
this information, the point of minimum distance across each row of the distance matrix ^ij is calculated. This corresponds to
the point where a likely match occurs:
v ¼ argmin
s

½dst�; 8 t 2 ½1; � j�: ð7Þ
The distance matrix ^ij is a rectangular matrix in which the main diagonal corresponds to zero time-shift. The diagonal above
and below the main diagonal correspond to positive and negative time-shifts, respectively. We calculate the matching
histogram VijðDtÞ for camera recordings Ci and Cj from the distance matrix ^ij for the counts of the number of minimum
distances along each diagonal. This is illustrated in Fig. 2(b). The x and y-axes in VijðDtÞ correspond to the time-shifts and
counts, respectively. If the overlapping between a pair of recordings is greater than 8%, we get a dominant peak in the match-
ing histogram which represents the synchronization time-shift, otherwise, it is unlikely to have a dominant peak.

5.3. Feature analysis

In order to find the lowest dimension of chroma feature which can provide the correct synchronization time-shift, we
conducted an experiment by analyzing pairs of audio signals from different events. For Fi and Fj, we computed the synchro-
nization time-shifts for all combinations of 1–12 dimensions of chroma features, which are 12, 66, 220, 495, 792, 924, 792,
495, 220, 66, 12 and 1 respectively. Fig. 3 shows the effect of varying the dimension of the chroma feature on five pairs of
recordings, where the first row depicts the maximum, mean and minimum time-shift error when testing with all possible
combinations. The second row shows the occurrence of true and false matches which correspond to correct and incorrect
synchronization time-shifts with a ±0.05 s tolerance, normalized over all the combinations of varying dimensions of the
chroma feature.

When the overlap between two signals is greater than 20% (18 s) (Fig. 3(b), (d), and (e)), any combination of chroma
beyond 6-dimensions is sufficient for achieving synchronization. Otherwise, if the two audio signals are only partially over-
lapping and the length of one signal with respect to the other is short (7 s) with minimum 8% overlap), the synchronization
time-shift is not achieved until the 11th and 12th dimensions of the chroma feature as shown in Fig. 3(a) and (c), respec-
tively. In the case of Fig. 3(a), a concert event pair containing amplified sound, the minimum overlap is 8% (7 s) with respect
to the longer recording. In the case of Fig. 3(c), a public event pair containing strong audio degradations along with
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Fig. 3. Effect of varying the dimensions of the chroma feature. The first row shows the maximum, mean and minimum time-shift errors for pairs of
recordings. The second row shows the normalized true and false match as counted for all combinations of varying dimensions of the chroma feature. (a)
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non-amplified sounds, the minimum overlap is 14% (12 s) with respect to the longer recording. This overlap is required to get
the correct synchronization time-shift. Note that audio fingerprinting [43] is unable to give the correct synchronization time-
shift for these cases.

The minimum value of 8% overlap between a pair of recordings is required when performing feature matching in which
we use the minimum distance across each row v. This results in outliers in the matching histogram with shorter signals. This
effect can be overcome by setting an empirical threshold on v for outlier removal or by using all 12 dimensions of chroma.

5.4. Classification threshold

Let us take bC # C of UGVs such that bC ¼ fbCbmgbMbm¼1
, where bM � M for training the classification threshold such that these

recordings are not included in the test data. The database bC contains bM videos for bE ¼ fEbkgbKbk¼1
events, where bK � K , such

that we have at least two overlapping videos for each Ebk . For these bM videos, we extract the features fFmg
bM
m¼1 using frame

size f r1. The selection of f r1 is done empirically and will be discussed in Section 7.2. We compute the matching histograms V

for all bM � bM video recording pairs (as discussed in Section 5.2). The matching histograms are given by
V ¼ fVijðDtÞg; 8i; j 2 ½1; bM�: ð8Þ
We then compute the delay matrix D for all video recording pairs, such that D ¼ ½Dij�
bM�bM , where each element of D is given

by
Dij ¼ argmax
Dt

VijðDtÞ: ð9Þ
We propose a method for the extraction of a descriptor from histograms V, which is invariant within the match and non-
match classes (Section 5.4.1). Using these descriptors we train a support vector classifier for bC to obtain the classification
threshold C (Section 5.4.2).

5.4.1. Histogram descriptor extraction
For the histogram VijðDtÞ, we compute the descriptor P0ij by performing a post-processing step (Fig. 1). Each histogram

VijðDtÞ is first normalized with respect to its maximum value at Dt:
bV ijðDtÞ ¼ VijðDtÞ
maxDt VijðDtÞ : ð10Þ
A scanning threshold parameter 0 6 Tr 6 1 is then defined, which scans bV ijðDtÞ from top to bottom counting the number of
matches on each incremental step g (where g ¼ 0:01 of Tr). This gives the match count Pij with respect to the scanning
threshold parameter Tr making it independent of the timeshifts (Fig. 4). The derivative P0ij which reflects the change in Pij

is then computed thus giving a 100-point descriptor of the histogram VijðDtÞ. Pij is a step representation which shows the
accumulation of the number of matches. By taking its derivative P0ij, we get a unique representation in which the descriptor
shows high value at the instances of change and reminds zero elsewhere. Therefore, the descriptor P0ij 2 R100 is distinguish-
able for match and non-match classes as their histogram VijðDtÞ is, but it gives a common representation for all variations of
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Fig. 4. Post-processing of matching histogram VijðDtÞ: (a) example histogram obtained for the match class, and (b) example histogram obtained for the non-
match class. Histogram descriptors P0ij are computed for all VijðDtÞ by scanning from top to bottom using 0:0 6 Tr 6 1:0 and taking their derivative.
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match and non-match classes. Fig. 4 illustrates the process of the histogram descriptor P0ij extraction from match and non-
match histograms.

5.4.2. Classifier
The obtained histogram descriptors P0ij are rearranged and labeled as belonging to the match and non-match classes for

training the classifier. P0ij are rearranged row-wise to give the set
P0 ¼ fP011; P
0
12; . . . ; P0bMbMg: ð11Þ
P0 contains Np match descriptors and Nn non-match descriptors, where Np þ Nn ¼ bM � bM . In order to avoid over-fitting the
data, we use a bag-of-words approach [26]. We perform k-means clustering for match and non-match class vectors by select-
ing jNp and jNn as the number of clusters which are determined using the elbow method [30]. The returned cluster center
represents the possible variations within a class which are then considered as the training set. The clustered set of training
vectors belonging to match and non-match classes are given by
T ¼ fðP01;1Þ; . . . ; ðP0j;1Þ; . . . ; ðP0kNp
;1Þ; ðP01;�1Þ; . . . ; ðP0j;�1Þ; . . . ; ðP0kNn

;�1Þg; ð12Þ
where P0j 2 R100 represents the cluster center. We use a linearly separable support vector classifier (SVC) [48] for separating
the two classes and computing the classification threshold C. SVC learns C using the training data T, such that it maximizes
the distance between the support vectors of the two classes. The learned classification threshold C is then used to classify
and cluster the testing database (Section 5.5) for which the time-shift estimation and validation is then performed for syn-
chronization (Section 6).

5.5. Event clustering

In order to identify the group of UGVs that belongs to the same event Ek, we extract the descriptors P0ij; 8i; j 2 ½1;M�, wherebM recordings are not included. The classification threshold C is then used to identify overlapping UGVs belonging to the
same events. As a result, we get an identification matrix I ¼ fIij; j Iij 2 Z½�1;1�g; I 2 ZM�M , which is symmetric. Iij takes the
value 1 if an overlapping video is identified, otherwise its value is �1. Our proposed method does not require initialization
by the number of clusters to be identified. The group of identical rows in I corresponds to the videos identified as belonging
to the same event Ek. The set of videos are grouped to form an event cluster Ek ¼ fCk;ngNk

n¼1. Once the clusters are identified,

the longest UGV within each cluster, eCk, is taken as the representative for each event cluster Ek in order to facilitate overlaps
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with the rest of the recordings belonging to that cluster. As a result of event clustering, we obtain the set of representative
videos
0
20
-0
20
-3
6

-60
4

Fig. 5.
betwee
eC ¼ feCk : 8k 2 ½1;K�g: ð13Þ
5.6. Association of new videos to the database

Let Cq be a query video to be assigned to an event. Since we already performed event clustering, instead of matching Cq

with C, we perform its matching with eC. The feature vector Fk for all representative video recordings eC are precomputed
using frame size f r1. We compute chroma features Fq for the query video using f r1. The matching histograms Vkq and descrip-
tors P0qk : 8 k 2 ½1;K� are obtained as discussed in Section 5.4. The descriptors are then mapped on to the classification
threshold C, which identifies the event cluster Ek containing the set of UGVs having the same overlapping event as Cq.

6. Time-shift estimation and cluster membership validation

Once each event cluster Ek containing the set of overlapping videos is identified, the next step is to synchronize these
UGVs on a common timeline. In this section, we present our time-shift estimation and validation approach.

Without loss of generality, let us consider Ck;1 ¼ eCk as the reference video with the longest duration in Ek. To achieve high

precision for the synchronization, the feature vectors fFk;ngNk
n¼1 for fCk;ngNk

n¼1 are computed using a frame size of f r2 < f r1 (as
discussed in Section 4). Feature matching is then performed between all recording pairs (Nk � Nk) to estimate the synchro-

nization time-shifts, which results in the delay matrix D ¼ ½Dij�Nk�Nk (Eq. (9)). The delay matrix D is anti-symmetric
(Dij ¼ �DjiÞ if all UGVs are partially or completely overlapping. However, if false positive identification occurs the delay
matrix D might not be anti-symmetric. The analysis of D is thus required for the validation of the identification results, elim-
ination of any false identifications and for the calculation of consistent time-shifts.

We analyze the delay matrix using the time-shift validation method of Casanovas and Cavallaro [7] for validating the
cluster membership. We generate the histogram hii0 where i – i0; 8 i; i0 2 ½1;Nk�. The histogram hii0 contains the time-shifts
between camera recording i and i0 and is given by
hii0 ¼ fðDij � Di0 jÞ [ ðDji0 � DjiÞg; ð14Þ
where j 2 ½1;Nk�. The returned hii0 is quantized to the first decimal place for consistency. The most frequently occurring value
on this histogram is selected as the consistent time-shift Dtii0 . A video that does not belong to the same event as the other
videos contained in the cluster will have no consistency and this information is used to remove false identifications. Fig. 5
illustrates this validation process with the help of a delay matrix in which video Ck;5 is intentionally selected to be different
from all other UGVs for the purpose of demonstration.

7. Results

In this section we present the datasets, the experimental setup, the validation of the proposed method for video identi-
fication and synchronization, and a comparison with state-of-the-art methods.

7.1. Datasets

We collected 263 multi-camera UGVs of 43 different concert events and 5 different public events such as the Changing of
the Guard, the Olympic torch relay, the New Year fireworks and a private dinner (Table 2). In total we collected multi-camera
UGVs for 48 events, with a total duration of 1200 min (minutes). The concerts contain multiple recordings: a Nickelback con-
cert, an Evanescence concert and an Alice Cooper concert. The concert recordings contain audio degradations such as noise,
background music and crowd cheering. Moreover, these UGVs contain moving cameras with pan and tilt, shake, varying
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Cluster membership validation using [7]: (a) example delay matrix for N ¼ 8 belonging to the same event, (b) histogram h12 for the time-shift
n C1 and C2, showing its consistency, and (c) histogram h15 for the time-shift between C1 and C5, showing its inconsistency.



Table 2
Summary of the main characteristics of the dataset along with its challenges. (Key. k: event number; N: number of UGVs; f v : video frame rate; s: audio
sampling rate; –: indicates that only some of the UGVs contain that property).

k Event title General characteristics Challenges

N f v (fps) s (kHz) Duration (min:s) Moving
cameras

Varying
distance

Channel
noise

Ambient
noise

Non-amplified
sound

1 Nickelback_Event1 7 16–30 44.1 4:01–5:20 U U – –
2 Nickelback_Event2 9 16–30 44.1 4:00–4:42 U U – –
3 Nickelback_Event3 6 24–30 44.1 0:18–4:29 U U – –
4 Nickelback_Event4 7 16–30 44.1 2:26–4:47 U U – –
5 Nickelback_Event5 5 25–30 44.1 3:20–4:56 U U – –
6 Nickelback_Event6 4 25–30 44.1 3:43–4:16 U U – –
7 Nickelback_Event7 6 17–30 44.1 2:01–5:25 U U – –
8 Nickelback_Event8 5 24–30 44.1 1:39–4:06 U U – –
9 Nickelback_Event9 4 24–30 44.1 2:59–8:16 U U – –

10 Nickelback_Event10 4 24–25 44.1 3:37–5:22 U U – –
11 Nickelback_Event11 3 25–30 44.1 1:41–3:35 U U – –
12 Nickelback_Event12 3 24–25 44.1 2:51–4:42 U U – –
13 Nickelback_Event13 3 25 44.1 3:35–4:16 U U – –
14 Nickelback_Event14 3 25–30 44.1 3:29–4:45 U U – –
15 Nickelback_Event15 3 25–30 44.1 4:12–4:42 U U – –
16 Nickelback_Event16 3 25–30 44.1 2:58–3:55 U U – –
17 Nickelback_Event17 3 30 44.1 3:23–3:52 U U – –
18 Nickelback_Event18 2 24–30 44.1 3:09–8:46 U U – –
19 Nickelback_Event19 2 25 44.1 3:48–4:18 U U – –
20 Nickelback_Event20 2 25–30 44.1 4:22–5:04 U U – –
21 Evanescence_Event1 16 25–30 44.1 0:45–5:56 U U – –
22 Evanescence_Event2 7 25–30 44.1 0:59–3:57 U U – –
23 Evanescence_Event3 10 25–30 44.1 2:00–4:47 U U – –
24 Evanescence_Event4 9 24–30 44.1 0:20–4:03 U U – –
25 Evanescence_Event5 6 25–30 44.1 2:57–4:08 U U – –
26 Evanescence_Event6 9 30 44.1 0:55–4:54 U U – –
27 Evanescence_Event7 8 24–30 44.1 2:02–4:04 U U – –
28 Evanescence_Event8 9 24–30 44.1 1:08–5:08 U U – –
29 Evanescence_Event9 4 24–30 44.1 2:27–4:21 U U – –
30 Evanescence_Event10 6 24–25 44.1 1:37–3:32 U U – –
31 AliceCooper_Event1 8 30 44.1 3:12–5:00 U U – –
32 AliceCooper_Event2 11 24–30 44.1 3:07–6:03 U U – –
33 AliceCooper_Event3 2 29–30 44.1 2:38–2:57 U U – –
34 AliceCooper_Event4 3 30 44.1 3:56–4:10 U U – –
35 AliceCooper_Event5 3 25 44.1 3:36–4:28 U U – –
36 AliceCooper_Event6 3 25–30 44.1 3:36–6:41 U U – –
37 AliceCooper_Event7 3 17–30 44.1 3:15–4:0 U U – –
38 AliceCooper_Event8 4 24–30 44.1 1:24–3:04 U U – –
39 AliceCooper_Event9 2 30 44.1 3:26–3:27 U U – –
40 Madonna_Event 11 24–30 44.1 0:28–5:37 U U – –
41 Coldplay_Event 7 24–30 44.1 4:16–7:50 U U – –
42 LesMesirable_Event 7 24–30 44.1 2:33–6:44 U U – –
43 Springsteen_Event 6 24–30 44.1 3:24–6:35 U U – –
44 ChangeofGuard 2 25–30 32–44.1 0:34–2:02 U U U U

45 OlympicTorchSheffield 2 30 44.1 0:39–1:28 U U U U

46 OlympicTorchMileEnd 7 16–30 16–48 5:54–7:01 U U U U U

47 XmasDinner 3 30 16 2:35–3:19 U U U U

48 FireworksLondon 11 25–30 16–44.1 0:29–14:16 U U U U
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visual quality, fields of view and lighting conditions. The public events which we recorded ourselves introduce additional
challenges for audio synchronization as they contain considerable ambient noise, moving cameras widely separated from
each other and moving audio sources with non-amplified sound. Table 2 summarizes the main characteristics of our datasets
along with their challenges. We also collected 60 additional UGVs to be used as the query Cq, which are not overlapping with
any of the 48 events but belonged to similar events such as the same concert of Nickelback, Evanescence, and Alice Cooper,
the Changing of the Guard in different parts of the world and the Olympic torch relay in different places in the UK.

The ground-truth for video identification and synchronization was generated manually. When observing and matching
two UGVs, an annotation error of ±1 video frame (±0.04 s) can occur.

7.2. Experimental setup

For the computation of audio features, the audio signal from a UGV Ci is segmented into overlapping audio frames � n

with hop hp ¼ 25% of f r and frame size f r2 ¼ 0:04 s for time-shift computation, which gives an accuracy of 0.01 s for
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synchronization. For video identification, a value of f r1 ¼ 3:0 s was found to be an appropriate compromise between effi-
ciency and accuracy. The energy spectrum of the audio frames is computed on the logarithmic scale, where the minimum
and maximum are set to 100 Hz and 5000 Hz as proposed by [19]. The computed spectrum energy is then redistributed along
the 12 pitch classes (chroma) and matching is performed using the proposed method detailed in Section 5.2. To compute the
classification threshold C we used a training dataset of 7 events containing 42 UGVs. This dataset gave 1764 matching pairs,
out of which 288 belonged to the match class. We trained the classifier by selecting jNp ¼ 15 and jNn ¼ 28 determined using
the elbow method for selecting the number of clusters. As a result we obtained the classification threshold C.

7.3. Discussion and comparisons

For video identification and event clustering, testing is performed on two sets of UGVs: (a) 41 events containing 221 UGVs
which forms our database, (b) 60 additional events along with 221 UGVs (of 41 events) where the additional 60 UGVs are not
contained in our database. All (a) 221 � 221 = 48,841 and (b) (221 + 60) � 221 = 62,101 possible match pairs are computed
and the ground-truth for video identification is generated. Fig. 6 shows the precision-recall curve for the two test sets. High
precision is achieved in both test cases with the area under the precision-recall curve to be 0.97 and 0.96, respectively. This
shows the robustness of the proposed framework even with the additional UGVs. Video identification is followed by auto-
matic event clustering using which we identified 41 clusters.

To perform synchronization, we use the complete dataset of 48 events (263 UGVs) for the evaluation, as we are interested
in synchronizing all the events. The synchronization results are shown in Fig. 7(a). Despite several challenges, all videos are
synchronized with errors between estimated and ground-truth time-shifts smaller than 0.03 s. The proposed synchroniza-
tion approach is even effective for videos of a short duration (as analyzed in Section 5.3) and fails to correctly show the
time-shifts for only one UGV (belonging to Olympic Torch Mile End dataset) out of the 263 in the test. The error is due to
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Fig. 7. Comparison results showing the percentage of synchronized videos versus time-shift error with respect to the ground truth. (a) Synchronization
results on the whole dataset (Table 2). (b) Synchronization results for the dataset used in [7,43]. Key: AO indicates the audio onset based method [43]; AF
indicates the audio fingerprinting method [43]; AV indicates the audio-visual event method [7]; AC indicates the proposed method.



Fig. 8. The association and synchronization result for (a) a concert (Nickelback_Event1 as named in Table 2) and (b) the Olympic torch (OlympicTorch-
MileEnd as named in Table 2) event. Row 1 represents a snapshot frame from the query video. Each row represents a different video from the identified
cluster event. Each column corresponds to temporally aligned frames from the videos.
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the recording device malfunctioning and not capturing the audio signal for most of the time during recording. Time-shift
validation is also performed in order to verify that the obtained cluster of recordings belongs to the same event.

In order to further validate our proposed Audio Chroma (AC) based synchronization method, we compare it with state-
of-the-art methods based on Audio Onset (AO) [43], Audio Fingerprinting (AF) [43] and Audio-Visual Event (AV) [7] using
our dataset (Fig. 7(b)). AO and AV are comparable, while at times AV gave slightly worse results than AO. Since these two
methods are highly sensitive to audio degradations, they failed to synchronize a large number of UGVs. Likewise, Audio
Fingerprinting (AF) [43] is robust to ambient noise but failed to give the correct result for some recordings containing rever-
berations and channel noise. Furthermore, AF failed to synchronize UGVs of a short duration (<30 s). AC outperformed the
other three methods as it was able to synchronize 262 out of 263 UGVs, followed by AF, giving an overall accuracy of
99.62% and 94.79%, respectively.



120 S. Bano, A. Cavallaro / Information Sciences 302 (2015) 108–121
To have a fair comparison with the state of the art, we also perform testing with the dataset used in [7,43] (Fig. 7(b)). The
same trend can be observed as for our dataset: the results obtained with AC and AF are comparable, but AC outperforms the
other methods. The best overall performance is achieved by AC, followed by AF, AO and AV.

The association and synchronization for a concert (Nickelback_Event1) and the Olympic torch (OlympicTorchMileEnd)
event are shown in Fig. 8, where row one shows Cq and the identified cluster videos are shown in the subsequent rows. Each
column represents the synchronized frame for these video recordings. Note the different visual quality (C4 and C5 in
Fig. 8(b)), variations in the field of views (C1 and C4 shows far field of views as compared to Cq and C6 in Fig. 8(a)), lighting
(C2 and C3 in Fig. 8)) and camera motion (C6 in Fig. 8(a) and (b) showing zooming in motion) in the snapshot frames.

To test the robustness of the proposed framework, association is also performed using similar UGVs (using an additional
dataset of 60 UGVs, which is detailed in Section 7.1). Though depicting similar events but with no time overlap, no event
cluster is identified when performing association with these additional UGVs. This is also shown in Fig. 6, which further val-
idates the robustness of our framework.
8. Conclusions

We presented an automatic identification and synchronization framework for multi-camera UGVs and query-by-example
video event search. The proposed approach uses audio chroma features to cluster UGVs belonging to the same event and to
estimate their relative time-shift. Unlike existing identification approaches [5,28], we proposed an automatically determined
classification threshold for clustering and association of new incoming videos. We demonstrated the robustness of the pro-
posed method to audio degradations including high ambient and channel noise, and discussed a comparative analysis with
existing state-of-the-art methods.

As future work, we are interested in generating a new cluster for a query video for which a matching UGV does not exist in
the dataset. Also, the audiovisual content uploaded on media sharing websites will increasingly be accompanied by
additional information from other sensors embedded in the recording devices [13,14,24], we will analyze these multimodal
signals in order to increase the efficiency of the analysis and event clustering.
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