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Abstract. Magnetic resonance imaging (MRI) can generate multi-
modal scans with complementary contrast information, capturing various
anatomical or functional properties of organs of interest. But whilst the
acquisition of multiple modalities is favourable in clinical and research
settings, it is hindered by a range of practical factors that include cost
and imaging artefacts. We propose XmoNet, a deep-learning architec-
ture based on fully convolutional networks (FCNs) that enables cross-
modality MR image inference. This multiple branch architecture oper-
ates on various levels of image spatial resolutions, encoding rich feature
hierarchies suited for this image generation task. We illustrate the util-
ity of XmoNet in learning the mapping between heterogeneous T1- and
T2-weighted MRI scans for accurate and realistic image synthesis in a
preliminary analysis. Our findings support scaling the work to include
larger samples and additional modalities.

Keywords: Fully convolutional networks · MRI · Multimodal
Image generation

1 Introduction

Magnetic resonance imaging (MRI) is the key imaging technology used to aid
the diagnosis and management of a wide range of diseases. Visual character-
istics of tissues of interest can be acquired via a variety of MR modalities
(e.g. T1-weighted, T2-weighted, FLAIR, diffusion-weighted and diffusion-tensor
imaging), each offering complementary contrast mechanisms. For instance in
neuro-oncology, T1-weighted scans are favourable for observing brain structures
whereas T2-weighted scans can provide rich information for tumour localisation.
However, a number of factors impede acquisition of multimodal scans in clinical
settings; particularly cost, limited availability of scanning time and patient dis-
comfort [7]. In research settings and imaging clinical trials, it is common to face
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heterogeneous or incomplete datasets due to similar reasons, as well as acquisi-
tion artefacts and data corruption. This has motivated various efforts in the MR
literature that can broadly be divided into two categories: (i) improving image
acquisition and reconstruction strategies, and (ii) synthesising a target modality
given a separate source modality; also known as cross-modality generation.

Cross-modality generation has attracted the attention of the medical image
computing community in recent years. Work by D. H. Ye et al. [14] investi-
gated a modality propagation approach, where for each point in the target
image a patch-based search is carried out across a database of images, utilis-
ing nearest neighbours’ information for estimating target modality values. The
work was motivated by the observation that local and contextual similarities
observed in one modality can often extend to other modalities. Evaluation of
the approach illustrated effectiveness in synthesising T2-weighted and DTI sig-
nals given a source T1-weighted input, including successful application on brain
tumour scans. Y. Lu et al. [10] proposed a novel distance measure that used
patch based intensity histogram and Weber Local Descriptor features to search
the most similar patch from the database for modality synthesis.

Recently, Y. Huang et al. [7] proposed a weakly supervised technique that
requires only a few registered multi-modal image pairs for effective cross-
modality generation. The technique works through mapping different image fea-
tures of the underlying tissues, preserving global statistical image properties
across modalities, and subsequently refining the features to ensure local geo-
metrical structures are preserved within each modality. Additionally, manifold
matching is used to select target-modality features from the most similar source-
modality subjects; thus complementing unpaired data with the original training
pairs. Effectiveness of the technique was illustrated in cross modality generation
between T1- and T2-weighted scans, as well as T2- and PD-weighted scans.

Fig. 1. The proposed XmoNet enables cross-modality MR image inference, as demon-
strated here with an example. The architecture takes as input a T1-weighted slice in
(a) and predicts the corresponding T2-weighted slice in (c). Ground-truth T2-weighted
slice is shown in (b) for reference. Visual inspection of (b) and (c) illustrates practical
utility of XmoNet in achieving cross-modality mapping, along with generation of areas
which have missing ground-truth data; a high-value application in clinical and research
settings.
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Deep learning algorithms, particularly Convolutional Neural Networks
(CNNs), have rapidly gained widespread adoption within the medical image
computing community. Work by Bahrami et al. [2] studied the utility of CNNs
for mapping cross-domain scans, albeit for a resolution mapping problem (3T
to 7T MRI) as opposed to generation of missing modalities. In their earlier
work, Bahrami et al. [3] made use of high- and low-frequency visual features,
thus capturing variations among 3 T scans with various levels of quality. Eval-
uation was carried out on various paired MR datasets of healthy subjects, as
well as patients with epilepsy and MCI. A. Ben-Cohen et al. [4] combined a fully
convolutional network (FCN) with a conditional generative adversarial network
(GAN) to generate PET data from CT for improving automated lesion detec-
tion. Y. Hiasa et al. [5] proposed CycleGAN-based MR to CT orthopedic image
synthesis method in which the accuracy at the bone boundaries was improved
by adding the gradient consistency loss.

We contribute XmoNet, a deep learning architecture for rapid and accurate
cross(X)-MOdality learning; and carry out a preliminary analysis to examine
its effectiveness on heterogeneous MR data. The architecture is based on fully
convolutional networks (FCN) and utilises parallel pathways to encode low- and
high-frequency visual features, allowing mapping of rich feature hierarchies. Pre-
liminary analysis demonstrated accurate and realistic synthesis of target T2-
weighted images from source T1-weighted data (see Fig. 1); our findings support
scaling the work to include larger samples and additional modalities.

Fig. 2. Flowchart of the proposed XmoNet. The input T1-weighted slice is convolved
using multiple pathways at different resolutions. The output from each pathway is
upsampled with a deconvolution operation and then fed into a fusion layer. The multiple
higher resolution pathways allows high-frequency patterns to be preserved. Multiple
residual layers are added to the lowest resolution path, which ensures mapping of low-
frequency visual patterns from the source data.
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2 Proposed Method

Inspired by recent successes of fully convolutional networks (FCNs) [1,9,11] the
XmoNet utilises a FCN architecture that learns the cross-modality mapping from
T1- onto T2-weighted MR data. Figure 2 shows a flowchart of the proposed archi-
tecture. Given an input slice, the network utilises several strided-convolutional
layers to reduce spatial dimensionality whilst increasing the number of acti-
vation channels at every branch, following intuition from the well-established
VGG architecture [12]. Through the use of multiple pathways, we map differ-
ent frequency levels of visual features from the input scan. The use of multiple
pathways is inspired by FCN methods proposed for semantic segmentation [1,9],
and ensures capturing of high-frequency visual patterns. Merging with deconvo-
lution layers is carried out in order to spatially upsample the activations whilst
reducing the number of channels. These are followed by fuse layers for pathway
concatenation. Residual layers are also used for cross-modality mapping of low-
frequency visual patterns. The network uses 4, 8 and 16 filters in the first, second
and third convolutional pathways respectively. The two residual blocks use 16
filters each and the filters in the upsampling layers are reduced to 8 and 4 in the
first and second branch, respectively. L2 loss is used for the network training.

3 Experimental Analysis

3.1 Dataset

In this preliminary analysis we used the public MNI-HISUB25 dataset by
Kulaga-Yoskovitz et al. [8] which includes submillimetric, high-resolution T1-
and T2-weighted brain scans of 25 healthy subjects. The dataset is available
in NIfTI format and is labelled for hippocampal subfields. Resolutions are
0.6 × 0.6 × 0.6 mm2 and 0.45 × 0.45 × 2.0 mm2 for T1- and T2-weighted scans,
respectively. Kulaga-Yoskovitz et al. [8] pre-processed the captured scans for spa-
tial normalisation to MNI152-space as well as registration of the two modalities.
The final, pre-processed T1- and T2-weighted scans have a 0.4 × 0.4 × 0.4 mm3

resolution in MNI152-space which are used in our experiments.

3.2 Experimental Setup

We used the open-source med2image1 tool for MRI axial slice extraction. This
was then followed by extracting only those slices that contained hippocampi
since region around hippocampi is of high relevance to the diagnosis of brain
disorders such as Alzheimers’ disease. In total, 2431 slices (452 × 542 pixels)
contained hippocampi regions; these formed the data for our experiments. We
performed two experiments: (i) input to XmoNet was the whole T1-weighted
image (452×542 pixels), and (ii) input to XmoNet was a cropped region selected
around right hippocampus of the T1-weighted image (128 × 128 pixels).

1 https://github.com/FNNDSC/med2image. last access: 20072018.

https://github.com/FNNDSC/med2image
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T2-weighted images in the dataset failed to capture complete brain struc-
tures; most of them had zero-pixel regions in place of lower or/and upper parts
of the images (Fig. 1). Incorporating corrupted regions into the learning process
would obscure network training; we alleviated this through generating exclusion
masks obtained by detecting regions in the T2-weighted images where no signal
was present. A blob size threshold was used to ensure zero-pixel brain structures
were not included within the masks. Such masks were subsequently used dur-
ing model training, ensuring the loss is computed only for pixels within which
an anatomical signal was present. Similarly, the masks were used during the
validation stage when computing evaluation metrics.

3.3 Validation Protocol

(a) 80% of the data was selected (first 20 subjects; 1961 slices in total) for model
training. The remaining data (5 subjects; 470 slices) were completely unseen
during the training process but held out for evaluation. (b) Furthermore, we
performed k-fold cross-validation (k=5) to provide additional reassurance; each
fold contained an average of 485 slices representing the scans of 5 subjects. The
cross-validation loop consisted of model training over 4 folds and subsequent
testing on the remaining fold. An i7-CPU workstation with NVIDIA 1080 GTX
card installed was used for the analysis. The training process took place over 20
hours (approx. 5 hours per fold) for 5-fold validation. Observed testing rate was
48 slices per second.

3.4 Evaluation Metrics

Peak signal-to-noise ratio (PSNR) and structural similarity (SIMM) [13] metrics
are used in existing method [2,3,6] for the quantitative evaluation of recon-
structed images/patches, hence we used the same evaluation metrics. Given a
ground-truth X and a generated image Y both of height H and width W ; mean
square error (MSE) is first obtained:

MSE =
1

HW

H−1∑

i=0

W−1∑

i=0

[X(i, j) − Y (i, j)]2 (1)

PSNR (in dB) is then computed as follows (MAXX is the maximum possible
pixel intensity; 255 here):

PSNR = 10 log10

(
MAX2

X

MSE

)
(2)

SIMM measures the perceived change in Y relative to X and is computed as:

SIMM(x, y) =
(2μxμy + c1) (2σxy + c2)(

μ2
x + μ2

y + c1
) (

σ2
x + σ2

y + c2
) (3)
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where μx and μy are the mean, σx and σy are the variance and σxy are the covari-
ances of X and Y . c1 and c2 depend on the dynamic range of pixel intensities;
needed to stabilise division on weak denominators [13]. Increase in PSNR sug-
gests an improvement in signal to noise ratio i.e. lower noise and/or better image
generation. SIMM, on the other hand, captures the structural similarity between
a synthesised and a ground-truth image. PSNR and SIMM were computed for
only those pixels that lie outside the defined exclusion masks. Visual inspec-
tion was further carried out to assess realism of synthesised images, particularly
regions where no T2 ground-truth is available.

Table 1. Mean and standard deviation (Std) for PSNR and SIMM obtained via 5-
fold cross validation for synthesis of T2-weighted (i) complete images and (ii) right
hippocampus subregions.

fold# 1 2 3 4 5

Mean Std Mean Std Mean Std Mean Std Mean Std

Complete slice PSNR 30.48 0.58 30.74 0.56 30.98 0.67 30.96 0.53 31.11 1.21

SIMM 0.77 0.09 0.79 0.10 0.80 0.10 0.80 0.10 0.78 0.11

Hippocampi region PSNR 28.45 0.78 27.75 0.14 27.83 0.34 27.76 0.22 29.24 0.72

SIMM 0.60 0.12 0.61 0.13 0.61 0.12 0.60 0.13 0.63 0.14

4 Results and Discussion

Table 1 shows the result for the 5-fold validation for the complete and right-
hippocampus T2-weighted sub-region generation. Both PSNR and SIMM mea-
sures are higher for the complete T2-weighted image synthesis compared to the
T2-weighted sub-region synthesis as complete image synthesis managed to better
capture high resolution details resulting in relatively accurate and sharp image
generation. This is because the variance of each pixel in complete T2-weighted
image is low during training compared to the sub-region image.

Figure 3 shows a set of original images (T1-weighted network input and noisy
T2-weighted ground-truth) as well as synthesised T2-weighted images for 8 dif-
ferent subjects. The proposed XmoNet is capable of achieving cross-modality
mapping from T1 onto T2. Visual inspection of these figures suggests that syn-
thesised images better capture overall brain structures (with respect to source
T1-weighted images) than the original T2 scans; successful synthesis of regions
with heavily missing T2 signal is achieved (Fig. 3(d)–(f)).

A number of limitations exist in this study. Firstly, the generated brain
regions for which no T2 baseline exists require thorough validation and assess-
ment by medical experts. Additionally, network input-output is currently a T1-
T2 generation route; exploring the opposite scenario of T2-T1 generation was not
carried out. Furthermore, testing data used in the study was obtained from the
same source as the training/fine-tuning data; studying network’s generalisability
to different acquisition settings was not carried out.
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Fig. 3. Representative images of axial slices from six subjects (a)–(f); (a)–(c) sections
at the level of Pons showing missing frontal lobe parts in the T2 (ground-truth) scans,
(d)–(f) showing missing frontal and parietal lobe parts in the T2 (ground-truth) scans.
XmoNet automatically generated the missing parts as shown in T2 (predicted). For
each subject, upper row shows complete image synthesis while lower row shows results
on the hippocampus sub-region images.
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In addition to the above, validating XmoNet on larger datasets will drive our
future efforts. Additionally, rigorous comparison against performance of state-
of-the-art methods is crucial. An interesting application of the work is synthesis
of images of non-healthy regions e.g. brain tumours. Although the model was
designed for MR image generation, it can be adopted to incorporate non-MR
based modalities (e.g. CT). Moreover, cross modality inference in 3D images is
also of interest [6], hence adopting our model to 3D images can also be considered.

5 Conclusions

We proposed XmoNet, a CNN designed for the problem of cross-modality MR
image generation. The network utilises a fully convolutional architecture, where
multiple pathways are used to capture a hierarchy of low- and high-frequency
visual patterns. A preliminary analysis was carried out on brain MR scans of 25
healthy subjects. Quantitative evaluation and qualitative visual inspection illus-
trated the utility of XmoNet for accurate and realistic synthesis of T2-weighted
images from source T1-weighted data. Our findings support extending the anal-
ysis to incorporate larger datasets and additional modalities.
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