Automating Periodontal Bone Loss Measurement via Dental Landmark Localisation

Raymond Danks, Sophia Bano, Anastasiya Orishko, Hong Jin Tan, Federico Moreno Sancho, Francesco D'Aiuto, Danail Stoyanov

Raymond.danks.19@ucl.ac.uk

June 2021 | IPCAI 2021

Periodontal Disease and Periodontal Bone Loss (PBL)

Periodontal disease 6th most common disease worldwide Periodontal
Bone LossBone around the tooth degradesIndicates severe periodontal disease

DETECTION: Radiographic assessment

DEFINITION: Ratio of tooth supported by bone

CONSEQUENCE: Leading cause of adult tooth loss

TREATMENT: Antibiotics, root planning, periodontal surgery

Radiographic Assessment – Why Automation?

TWO MAIN TYPES OF RADIOGRAPHS USED

Limitation

Radiographic assessment exhibits substantial interobserver errors

Solution

- Computer-assisted Diagnosis
- Calibrated to multi-expert assessments
- Objectively & consistently detect small changes in PBL

Contributions

- 1st paper to use Deep Learning for Landmark Localisation on Periapical Radiographs
- Introduces Interstitial Spatial MixUp (ISM) as novel data augmentation
- Extensive qualitative evaluation on numerous *root morphologies*
- Introduces a clinical pipeline that automatically emulates current interobserver error for PBL measurement

Measuring Periodontal Bone Loss

Given the landmarks, PBL is calculated:

- Length of tooth = Apex to CEJ
- Tooth supported by bone = Bone level to CEJ
- PBL = Ratio between both

Single, double and triple rooted teeth assessed:

- Single = 5 landmarks
- Double = 8 landmarks
- Triple = 9 landmarks

AcronymMeaningCEJ_(L/R)Cemento-Enamel Junction, Left/Right sideBL_(L/R/LC/RC)Bone Level, Left/Right/Left Centre/Right CentreA_(L/C/R)Apex, Left/Centre/Right

Clinical Categorisation of Periodontal Bone Loss

Four Severity Stage (SS) groups

Stage	PBL%		
1	<15%		
2	15 – 33%		
3	33 – 67%		
4	>67%		

2

PBL stage informs interventional decision

Proposed Solution

• An end-to-end pipeline that uses deep learning to measure PBL via landmark localisation

Proposed Network – Landmark Localisation

- Convolutional Neural Network (CNN)
- Symmetric Hourglass for localising landmarks
- Hierarchical, Multiscale Parallel (HMP) residual blocks
- Each root morphology has separate network

Network adapted from [1]

[1] - Tiulpin, A., Melekhov, I., Saarakkala, S.: KNEEL: Knee anatomical landmark localization using hourglass networks. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 352–361 (2019)

Interstitial Spatial MixUp (ISM)

Assess the relationship between pixel interpolation and in-place multi-scale analyses

THE PROCESS

- 1. 2 differently-sized images; place smaller one in centre
- 2. Interpolation w/ random γ
 - $ISM = \gamma * I_1 + (1 \gamma) * I_2$
- 3. Landmarks and pixels are interpolated as above

ISM Hypothesis

With a sufficiently small feature map and sufficiently large filter, it is hoped that ISM will encourage the creation of **robust** confidence mappings via convolution.

- Small feature maps conducive with Hourglass
- Encourages invariance to noise – interpolation between images and black space have same weighting

Methodology to calculate PBL

• **PBL estimation** from the predicted landmarks:

$$PBL\% = max(\frac{\|CEJ_L - A_C\| - \|BL_L - A_C\|}{\|CEJ_L - A_C\|}, \frac{\|CEJ_R - A_C\| - \|BL_R - A_C\|}{\|CEJ_R - A_C\|}) \times 100$$

- Severity Stage (SS) prediction from the estimated PBL
- **PBL** and **SS** compared to clinical diagnosis in two ways:
 - PBL calculation using clinician-labelled landmarks
 - Clinicians' direct estimation of entire periapical radiograph (2-4 teeth)

Dataset Description

Dataset mainly weighted towards **single rooted teeth**:

	No. Images	CEJ_L	CEJ_R	BL_L	BL_R	BL_{LC}	BL_{RC}	A_L	A_R	A_C
Single	463	463	463	463	463	-	-	-	-	463
Double	115	115	115	115	115	115	115	115	115	-
Triple	56	56	56	56	56	56	56	56	56	56

Key: CEJ – Cemento-Enamel Junction BL – Bone level A – Apex L – Left R – Right C - Centre

- BL_L, BL_{RC}, A_L and A_R least featured landmarks
 Impacts double rooted teeth mostly
- Triple rooted teeth aligned spatially
- Images resized to 256x256

Results – Landmark Localisation

3-fold cross-validation

- Our method outperforms all when weighted by dataset size
- ISM outperforms MixUp with the same additions and model
- Asymmetric hourglass outperforms our model for double and triple roots
- Central Apex is more accurately localised with our model

Madal	Root	STD-M			
woder		Mean \pm Std	Outliers		
Asymmetric	Single	12.12 ± 11.08	2.29%		
Hourglass	Double	$\textbf{18.03} \pm \textbf{17.77}$	4.02%		
W/ Proposed ISM	Triple	$\textbf{15.53} \pm \textbf{13.34}$	3.17%		
Additions	W-Mean	13.49 ± 12.49	N/A		
Symmetric	Single	$\textbf{10.85} \pm \textbf{10.13}$	2.20%		
Hourglass	Double	18.07 ± 17.04	4.67%		
W/ Proposed ISM	Triple	17.23 ± 14.12	3.57%		
Additions	W-Mean	12.72 ± 11.74	N/A		
Symmetric	Single	12.54 ± 11.59	2.59%		
Hourglass	Double	17.73 ± 16.47	4.02%		
W/ MixUp	Triple	17.94 ± 14.68	2.98%		
Additions	W-Mean	13.96 ± 12.75	N/A		
Asymmetric	Single	11.75 ± 11.24	2.76%		
Hourglass	Double	20.59 ± 19.08	4.35%		
No. Additions	Triple	19.43 ± 13.93	3.37%		
No Additions	W-Mean	14.03 ± 12.90	N/A		
Symmetric	Single	12.69 ± 11.85	2.46%		
Hourglass	Double	22.56 ± 18.78	4.57%		
No Additions	Triple	19.48 ± 15.07	3.57%		
NO Additions	W-Mean	15.08 ± 13.39	N/A		

Qualitative Landmark Results

- Single root teeth show impressive performance.
 - Percentage Correct Keypoints = 88.9%
- Model shows variance with radiography conditions.
- Triple rooted teeth all aligned spatially
- CEJ accurately predicted and bone level errors are logical

Comparison with clinical measurements

PBL predicted vs PBL calculated clinicians' labelled landmarks

- PBL% error = 6.82 ± 6.43
- Severity Stage accuracy = 68.30%
- Consistency in lower % but overall underestimation

Predicted vs clinically diagnosed stage from the entire radiograph

- PBL% error = 10.69 ± 9.15
- Severity Stage accuracy = 58%
- Most errors are from central class mispredictions
- · Labels are an estimate by clinicians

Conclusions

Performance: Periodontal bone loss error emulates current interobserver error

Interstitial Spatial MixUp shows promise in increasing robustness and accuracy

Future Research

 Increasing the size of datasets, improving data processing (STNs) and the variety of (cross-) labellers

Automating Periodontal Bone Loss Measurement via Dental Landmark Localisation

Raymond Danks, Sophia Bano, Anastasiya Orishko, Hong Jin Tan, Federico Moreno Sancho, Francesco D'Aiuto, Danail Stoyanov

Raymond.danks.19@ucl.ac.uk

June 2021 | IPCAI 2021

