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Background

A Esophagogastroduodenoscopy (EGD
+ Gold-standard
x Widely performed
# Potential blind spots

A Difficulties:

Standardized photdocumentation
4 Quality indicator
4 Various guidelines
& Time-consuming

fhttps//WWW teresewinslow.cdrh

A Need forthe automatic photdocumentation method to
support and efficiently improve the quality of endoscopy


https://www.teresewinslow.com/

Challenges

A Complete examination
# Geographical regions with higher gastric disease incidence
& Captured photos could construct a complete quality indicator
A Anatomical site classification
x Easilyrecognized from their statiegppearances
i Cover the preollected image datasets as much as possible
4+ Learnfrom a smalldataset

A Needfor a guideline adapted with the examination
procedure and classification algorithm at the same time



Endoscop y guidelines

AJapanese guideline [Yao,
i Focuses exclusively on detailed imaging of the stomach incluc
comprehensive multiple quadrant views of elactdmark
& Not routinely clinically implemented outside of Japan

ABritish guidel i a7@[E9GB,&6G1 h n
4 Includesadditional important landmarks outside of the stomact
i+ Fewerimages of thastomach

A Need for designing a new upper Gl guideline that adapt
to existing examination procedure



Objectives

A Guideline
4 Adaptedto existing examination procedure
4 Robust quality indicator
& Annotation friendly
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Workflow
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a) Data collection b) ROI extraction ¢) Anatomical annotation

8>O— Label

(CNN)

d) Deep learning-based anatomical site classification



Design of data collection

A Dataset before preprocessing
il mage resolution: 768 x 578,
il maging mode: WL, LCI , NBI é
i Dataset size: 229 cases including 5661 images

A Dataset after preprocessing
4 Imaging mode: WL, LCI

x Dataset size: 211 cases including 3ifdges



Design of ROI extraction

A Automaticoutbordereliminated Various image resolutions

4 Adapted to various
photographysituations

i Case average ROI extraction

a) Original images b) ROIs by threshold c) Our case average ROls



Design of Anatomical annotation

A Anatomical classification guideline

4 Adapted to existing British Guideline

— » Data augmentation friendly
- 8 & Annotation friendly
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Experimental Design

A Materials

3

x Four different forms of datasets

2

i Five-fold crossvalidation

No. (cite) NA PX ES S FS MA MR AS [B AM DB DD
O (proposed) — 0 1 2 3 4 5 6 8 9 10
1 (proposed) O 1 2 3 4 5 6 7 8 9 10 11
2 ([1,16]) - - 0 1 2 3 - 4 - 5 6 7
3 ([1,16]) 0 — 1 2 3 4 - 5 - 6 7 8

—, does not exist; NA, unqualified; PX, pharynx; ES, oesophagus; SJ, squamocolumnar junction; FS, fundus;
MA, middle-upper body antegrade view; MR, middle-upper body retroflex view; AS, angulus; LB, lower
body; AM, antrum; DB, duodenal bulb; DD, duodenal descending



Experimental Design

A Evaluation metrics and model implementation
& The overall accuracy (modgls

sum(diag(CM(Y, f(X))))
sum(CM(Y, f(X)))

rateoq (Y, f(X)) =

# Fl-score (landmarks)
& Confusion matrix (between landmayks

# Tool: PyTorch



Deep Learning -based anatomical site classification

A DenseNetl21

4 Multi-class cros&ntropy
loss:

x Data augmentation: Rotation,
flipping, random value
shifting, random scaling,
colour jitter

[ Ji et al ., 019]



